Independent effects of adding weight and inertia on balance during quiet standing
نویسندگان
چکیده
BACKGROUND Human balance during quiet standing is influenced by adding mass to the body with a backpack, with symmetrically-applied loads to the trunk, or with obesity. Adding mass to the body increases both the weight and inertia of the body, which theoretically could provide counteracting effects on body dynamics and balance. Understanding the independent effects of adding weight and inertia on balance may provide additional insight into human balance that could lead to novel advancements in balance training and rehabilitation. Therefore, the purpose of this study was to investigate the independent effects of adding weight and inertia on balance during quiet standing. METHODS Sixteen normal-weight young adult participants stood as still as possible on a custom-built backboard apparatus under four experimental conditions: baseline, added inertia only, added weight only, and added inertia and weight. RESULTS Adding inertia by itself had no measurable effect on center of pressure movement or backboard movement. Adding weight by itself increased center of pressure movement (indicated greater effort by the postural control system to stand as still as possible) and backboard movement (indicating a poorer ability of the body to stand as still as possible). Adding inertia and weight at the same time increased center of pressure movement but did not increase backboard movement compared to the baseline condition. CONCLUSIONS Adding inertia and adding weight had different effects on balance. Adding inertia by itself had no effect on balance. Adding weight by itself had a negative effect on balance. When adding inertia and weight at the same time, the added inertia appeared to lessen (but did not eliminate) the negative effect of adding weight on balance. These results improve our fundamental understanding of how added mass influences human balance.
منابع مشابه
Prediction of Body Center of Mass Acceleration From Trunk and Lower Limb Joints Accelerations During Quiet Standing
Purpose: Predicting body Center of Mass (COM) acceleration is carried out with more accuracy based on the acceleration of three joints of lower limb compared to only accounting joints of hip and ankle. Given that trunk movement during quite standing is noticeable, calculating trunk acceleration in model might increase prediction accuracy of COM acceleration. Moreover, in previous research studi...
متن کاملEffectiveness of Treadmill Training on Balance Control in Elderly People: A Randomized Controlled Clinical Trial
Physical exercise would improve postural stability, which is an essential factor in preventing accidental fall among the elderly population. The aim of this study is to examine the effectiveness of treadmill walking on balance improvement among the elderly people. A total of 30 community dwelling older adults with a Berg Balance Scale score of 36-48 and the ability to walk without aid were cons...
متن کاملEffects of Plantar Flexor Muscles Fatigue on Postural Control during Quiet Stance and External Perturbation in Healthy Subjects
Background: The maintenance of postural control is a key component in dynamic physical activity, especially during muscle fatigue and against external forces. Despite many studies in this field, there is no consensus regarding the effects of plantar flexor muscles fatigue on postural control during different postural tasks.Objective: To evaluate the effects of plantar flexor muscles fatigue on ...
متن کاملDynamics Study of Ankle Joint during Quiet Standing Balance Control with Emphasis on Dominant and Non-dominant Lower Limb
Purpose: The present study aimed to evaluate the effect of dominant lower limb on the correlation between some of the dynamic variables of ankle joint and center of mass during quiet standing balance control. Methods: Twelve healthy females with no known neurological or musculoskeletal disorders, with the mean age of 26±3.5 years, participated in this study. Motion analysis system, force ...
متن کاملTest-retest reliability and minimal detectable change for center of pressure measures of postural stability in elderly subjects
Abstract Background: Postural instability has been identified as a potential precursor of falls in elderly subjects. Postural stability in quiet stance is commonly assessed with center of pressure (COP) measures. The purpose of this study was to determine testretest reliability and minimal detectable change (MDC) for the center of pressure (COP) measures in the elderly subjects. Met...
متن کامل